HMCTM PIN Diode SP2T 20 Watt Switch for 0.05-6.0 GHz Higher Power Applications

Features

- Exceptional Broadband Performance, 0.05-6.0 GHz
- Low Loss: Tx = 0.24 dB Avg @ $2025 \mathrm{MHz}, 35 \mathrm{~mA}$
- $\quad \mathrm{Tx}=0.38 \mathrm{~dB}$ Avg @ $3500 \mathrm{MHz}, 35 \mathrm{~mA}$
- High Isolation: Rx=31.0 dB Avg @ 2025 MHz
- Rx=27 dB Avg @ 3500 MHz
- High RF C.W. Input Power: 20 W C.W. (Tx-Ant Port)
- Higher IIP3: > 64 dBm (Tx-Ant Port)
- Suitable for High Power TD-SCDMA \& WiMAX Applications
- Surface Mount 3mm MLP Package
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Re-flow Compatible

Description and Applications

M/A-COM's MASW-000825-12770T is a compact SP2T PIN diode switch in a lead-free 3 mm MLP plastic package that offers extraordinary performance with excellent isolation to loss ratio for both T_{X} and R_{X} states. The SP2T provides outstanding 20 W C.W. power handling coupled with 64 dBm IIP3 for maximum switch performance.

The MASW-000825-12770T is a $0.05-6.0 \mathrm{GHz}$ SP2T High Peak and Average Power PIN diode switch used for T/R or LNA Protect Switch applications such as WiMAX and TDSCDMA.

This device incorporates a PIN diode die fabricated with M/A-COM's patented Silicon-Glass HMIC ${ }^{\text {TM }}$ process. This chip features two silicon pedestals embedded in a low loss, low dispersion glass. The diodes are formed on the top of each pedestal. The topside is fully encapsulated with silicon nitride and has an additional polymer passivation layer. These polymer protective coatings prevent damage and contamination during handling and assembly.

Ordering Information

Part Number	Package
MASW-000825-12770T	1000 piece reel
MASW-000825-001SMB	Sample Board

Functional Diagram (TOP VIEW)

Circuit Side View

Pin Configuration:
(Center Metal Area is RF, D.C., and Thermal Ground)

PIN	Function	PIN	Function
1	N/C	9	GND
2	GND	10	Rx
3	$\mathrm{~T}_{\mathrm{x}}$	11	GND
4	GND	12	N/C
5	N/C	13	GND
6	N/C	14	Ant
7	N/C	15	GND
8	N/C	16	N/C

[^0]ADVANCED: Data Sheets contain information regarding a product M/A-COM is considering for

[^1]
HMCTM PIN Diode SP2T 20 Watt Switch for
 0.05-6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance $Z_{0}=50 \Omega, 35 \mathrm{~mA} / 28 \mathrm{~V}$

Parameter	Symbol	35mA / 28V Conditions	Units	Min.	Typ.	Max.
F = 2.0-2.7 GHz						
Insertion Loss, Rx	Rx, IL	Bias: See Table Below, Pinc=0 dBm	dB		0.42	0.55
Insertion Loss, Tx	Tx, IL	Bias: See Table Below, Pinc=0 dBm	dB		0.29	0.38
Isolation, Tx To Rx	Rx, ISO	Bias: See Table Below, Pinc=0 dBm	dB	24.5	28.6	
Isolation, Rx To Tx	Tx, ISO	Bias: See Table Below, Pinc=0 dBm	dB	21.3	24.2	
Tx Input Return Loss	Tx, RL	Bias: See Table Below, Pinc=0 dBm	dB		-28	
Rx Input Return Loss	Rx, RL	Bias: See Table Below, Pinc=0 dBm	dB		-28	
$\mathrm{F}=3.3$-3.8 GHz						
Insertion Loss, Rx	Rx, IL	Bias: See Table Below, Pinc=0 dBm	dB		0.56	0.71
Insertion Loss, Tx	Tx, IL	Bias: See Table Below, Pinc=0 dBm	dB		0.38	0.48
Isolation, Tx To Rx	Rx, ISO	Bias: See Table Below, Pinc= 0 dBm	dB	22	26	
Isolation, Rx To Tx	Tx, ISO	Bias: See Table Below, Pinc=0 dBm	dB	19.7	21.6	
Tx Input Return Loss	Tx, RL	Bias: See Table Below, Pinc=0 dBm	dB		-28	
Rx Input Return Loss	Rx, RL	Bias: See Table Below, Pinc=0 dBm	dB		-28	
$\mathrm{F}=4.9-5.9 \mathrm{GHz}$						
Insertion Loss, Rx	Rx, IL	Bias: See Table Below, Pinc= 0 dBm	dB		0.95	1.10
Insertion Loss, Tx	Tx, IL	Bias: See Table Below, Pinc=0 dBm	dB		0.59	0.71
Isolation, Tx To Rx	Rx, ISO	Bias: See Table Below, Pinc=0 dBm	dB	19.5	22.4	
Isolation, Rx To Tx	Tx, ISO	Bias: See Table Below, Pinc=0 dBm	dB	16.5	18.5	
Tx Input Return Loss	Tx, RL	Bias: See Table Below, Pinc=0 dBm	dB		-25	
Rx Input Return Loss	Rx, RL	Bias: See Table Below, Pinc=0 dBm	dB		-24	

Port	Tx	Rx	ANT
Pin	Pin 3	Pin 10	Pin 14
TX-ANT Isolation	+28V @ 0 ma	OV	+ 5 V @ 35 mA
Tx-ANT Insertion Loss	OV	+28V @ 0 ma	+ 5 V @ 35 mA
Rx-ANT Isolation	OV	+28V @ 0 ma	+ 5 V @ 35 mA
Rx-ANT Insertion Loss	+28V @ 0 ma	OV	+ 5 V @ 35 mA

[^2]
HMCTM PIN Diode SP2T 20 Watt Suitch for
 0.05-6.0 GHz Higher Power Applications

Electrical Specifications at $+\mathbf{2 5}^{\circ} \mathrm{C}$, Characteristic Impedance, $\mathrm{Z}_{\mathbf{0}}=50 \Omega$

Parameter	Symbol	Conditions	Units	Min	Typ	Max
Tx $2^{\text {nd }}$ Harmonic	$\begin{gathered} \text { Tx } \\ \text { 2Fo } \end{gathered}$	$\begin{gathered} \text { Fo }=2.010 \mathrm{GHz}, \mathrm{Tx}=+5.0 \mathrm{~V} @+35 \mathrm{~mA}, \\ \mathrm{Rx}=+28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \text { Pin }=+30 \mathrm{dBm}, \text { Tx To Antenna } \end{gathered}$	dBc		70	
Tx $3^{\text {rd }}$ Harmonic	$\begin{gathered} \text { Tx } \\ \text { 3Fo } \end{gathered}$	$\begin{gathered} \text { Fo }=2.010 \mathrm{GHz}, \mathrm{Tx}=+5.0 \mathrm{~V} @+35 \mathrm{~mA}, \\ \mathrm{Rx}=+28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \text { Pin }=+30 \mathrm{dBm} \text {, Tx To Antenna } \end{gathered}$	dBc		86	
Tx Input Third Order Intercept Point	$\begin{gathered} \text { Tx } \\ \text { IIP3 } \end{gathered}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+35 \mathrm{~mA}, \mathrm{Rx}=+28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{Pi}=+20 \mathrm{dBm}, \\ \mathrm{~F} 1=2.010 \mathrm{GHz}, \mathrm{~F} 2=2.020 \mathrm{GHz}, \\ \text { Tx To Antenna } \end{gathered}$	dBm		64	
Tx C.W. Input Power ${ }^{2}$	Tx CW Pinc	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+35 \mathrm{~mA}, \\ \mathrm{Rx}=+28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=2.010,3.500 \mathrm{GHz}, \mathrm{Tx} \text { To Antenna } \end{gathered}$	dBm W			$\begin{aligned} & 43 \\ & 20 \end{aligned}$
Tx Peak Input Power	Tx Pk Pinc	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+35 \mathrm{~mA}, \\ \mathrm{Rx}=+28 \mathrm{~V} @ 0 \mathrm{~mA} \end{gathered}$ $\mathrm{F}=2.010 \mathrm{GHz}$, Tx To Antenna (5μ S RF Pulse Width, 1\% Duty 1.10:1 Ant VSWR)	dBm W			$\begin{gathered} 53 \\ 200 \end{gathered}$
Rx C.W. Input Power	Rx CW Pinc	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+35 \mathrm{~mA}, \mathrm{Tx}=+28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=2.010 \mathrm{GHz} \text {, Antenna to Rx } \end{gathered}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$			$\begin{gathered} 39 \\ 8 \end{gathered}$
Tx Input P1dB	$\begin{gathered} \text { Tx } \\ \text { P1dB } \end{gathered}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+35 \mathrm{~mA}, \\ \mathrm{Rx}=+28 \mathrm{~V} @ \text { OmA } \\ \mathrm{F}=2.010, \mathrm{GHz}, \mathrm{Tx} \text { To Antenna } \end{gathered}$	dBm		>43	
Tx RF Switching Speed	$\tau_{\text {RF }}$	$\begin{gathered} (10 \%-90 \% \text { RF Voltage }) \\ \mathrm{Tx}=+5.0 \mathrm{~V} @+35 \mathrm{~mA}, \mathrm{Rx}=+28 \mathrm{~V} @ \text { 0mA } \\ \mathrm{F}=2.010 \mathrm{GHz}, \mathrm{Tx} \text { To Antenna } \\ 1 \mathrm{MHz} \text { Rep Rate in Modulating Mode } \end{gathered}$	ns		200	

Absolute Maximum Ratings ${ }^{1}$
@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Absolute Maximum
Forward Current	100 mA
Reverse Voltage (RF \& D.C.)	-140 V
Operating Temperature	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$
Tx Incident C.W. Power 2	20 W C.W.
Tx Peak Incident Power With 3.0:1 Maximum Ant VSWR	$150 \mathrm{~W}, 5$ uS P.W., 1% Duty

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These devices are rated Class 1B Human Body. Proper ESD control techniques should be used when handling these devices.

[^3]ADVANCED: Data Sheets contain information regarding a product M/A-COM is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outine has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

[^4]
HMCTM PIN Diode SP2T 20 Watt SMitch for
 0.05-6.0 GHz Higher Power Applications

D.C. Bias to RF Truth Table

RF State	TTL \& D.C. Bias Conditions	Voltage at Common Anode
 Isolation Tx-Rx	$+5 \mathrm{~V} @ 35 \mathrm{~mA}(\mathrm{Tx}),+28 \mathrm{~V} @ 0 \mathrm{~mA}(\mathrm{Rx})$	+0.9 V
 Isolation Rx-Tx	$+5 \mathrm{~V} @ 35 \mathrm{~mA}(\mathrm{Rx}),+28 \mathrm{~V} @ 0 \mathrm{~mA}(\mathrm{Tx})$	+0.9 V

Driver and SP2T Schematic with Positive Voltage

Notes:

1. Data is taken on M/A-COM evaluation board 1000029181-0000001 @ 25C by removing peripheral board losses (connectors, transmission line, and bias elements).
2. Typical PIN Diode Forward Voltage $=+0.9 \mathrm{~V} @+35 \mathrm{~mA}$ for Insertion Loss. Typical PIN Diode Reverse Voltage = 28 V-1.0 V = 27 V for Isolation.
3. Switch is Asymmetrical, +43 dBm RF C.W. Input Power Applies to Tx Port Only.
4. Center Ground Area of MLP 3mm Package must be Attached to Thermal Ground for Optimum RF Power Performance.
5. M/A-Com Recommends the usage of the MADR-008888 driver with this switch.

Assembly Note:

A typical soldering process profile and handling instructions are provided in Application Notes, S2083 "Surface Mount Instructions for QFN / DFN Packages" on the M/A-Com website at www.macomtech.com

Typical Small Signal Performance at $\mathbf{+ 2 5 ^ { \circ }}$ C, Characteristic Impedance, $Z_{0}=50 \Omega$

MASW-000825-12770T, TX/RX Insertion Loss
Bias: +5V @ 35 mA

MASW-000825-12770T, TX/RX Isolation
Bias: + 28V @ 0 mA

Typical Small Signal Performance at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $\mathrm{Z}_{0}=50 \Omega$

HMCTM PIN Diode SP2T 20 Watt Switch for
 0.05-6.0 GHz Higher Power Applications

Typical Power Handling, Characteristic Impedance, $Z_{0}=50 \Omega$
MASW-000825-12770T, TX To Antenna
TX Diode Tj Vs. Pin Vs. Bias Current
Bias:TX = + 5V @ $20 \& 35 \mathrm{~mA}, \mathrm{RX}=+25 \mathrm{~V} @ 0 \mathrm{~mA}$, PCb Temperature $\mathrm{Is}+\mathbf{2 5 C}$, Fo $=2010 \mathrm{MHz}$

MASW-000825-12770T, TX To Antenna
Maximum Pin Vs. PCB/Heatsink Temperature Vs. Bias Current Bias: $\mathrm{TX}=+5 \mathrm{~V}$ @ 20 \& $\mathbf{3 5} \mathrm{mA}, \mathrm{RX}=+\mathbf{2 5 V} @ 0 \mathrm{~mA}$, $\mathrm{Fo}=2010 \mathrm{MHz}$

This device is not for saturated power applications. Exceeding

ADVANCED: Data Sheets contain information regarding a product M/A-COM is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 - India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

HMCTM PIN Diode SP2T 20 Watt Svitch for
 $0.05-6.0 \mathrm{GHz}$ Higher Power Applications

MASW-000825-12770T Outline ${ }^{\dagger}$ - Lead Free 3mm FQFP-N 16 Lead Saw Singulated

[^5]Meets JEDEC moisture sensitivity level 1 requirements.

ADVANCED: Data Sheets contain information regarding a product M/A-COM is considering for

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: - North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
 - India Tel: +91.80.4155721 • China Tel: +86.21.2407.1588

 Visit www.macomtech.com for additional data sheets and product information.

 M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

[^2]: - North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 - India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

 M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

[^3]: 1. Exceeding these limits may cause permanent damage.
 2. Refer to page 7 of the datasheet for power handling curves.
[^4]: - North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
 - India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

 Visit www.macomtech.com for additional data sheets and product information.
 M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

[^5]: \dagger Reference Application Note S2083 for lead-free solder reflow recommendations.

